xbackend/api/api_v1/endpoints/query.py
2021-05-26 21:07:53 +08:00

104 lines
3.4 KiB
Python

import json
import pandas as pd
from fastapi import APIRouter, Depends, Request
import crud, schemas
from api import deps
from db.ckdb import get_ck_db, CKDrive
from db.redisdb import get_redis_pool, RedisDrive
from models import ToSql
router = APIRouter()
@router.post("/sql")
async def query_sql(
request: Request,
data_in: schemas.Sql,
ckdb: CKDrive = Depends(get_ck_db),
current_user: schemas.UserDB = Depends(deps.get_current_user)
) -> schemas.Msg:
"""原 sql 查询 """
data = await ckdb.execute(data_in.sql)
return schemas.Msg(code=0, msg='ok', data=data)
@router.post("/event_model_sql")
async def event_model_sql(
request: Request,
game: str,
data_in: schemas.CkQuery,
ckdb: CKDrive = Depends(get_ck_db),
rdb: RedisDrive = Depends(get_redis_pool),
current_user: schemas.UserDB = Depends(deps.get_current_user)
) -> schemas.Msg:
""" 事件分析模型 sql"""
columns_json = await rdb.get(f'{game}_event')
columns = json.loads(columns_json)
to_sql = ToSql(data_in.dict(), game, 'event', columns.keys())
res = to_sql.get_sql_query_event_model()
return schemas.Msg(code=0, msg='ok', data=res)
@router.post("/event_model")
async def event_model(
request: Request,
game: str,
data_in: schemas.CkQuery,
ckdb: CKDrive = Depends(get_ck_db),
rdb: RedisDrive = Depends(get_redis_pool),
current_user: schemas.UserDB = Depends(deps.get_current_user)
) -> schemas.Msg:
""" 事件分析"""
columns_json = await rdb.get(f'{game}_event')
columns = json.loads(columns_json)
to_sql = ToSql(data_in.dict(), game, 'event', columns.keys())
sqls = to_sql.get_sql_query_event_model()
res = []
for item in sqls:
q = {
'groups': [],
'values': [],
'event_name': item['event_name']
}
sql = item['sql']
groupby = item['groupby'][1:]
date_range = item['date_range']
q['date_range'] = date_range
df = await ckdb.query_dataframe(sql)
if df.shape[0]==0:
return schemas.Msg(code=0, msg='ok', data=q)
df['date'] = df['date'].apply(lambda x: str(x))
# todo 时间粒度 暂时按天
df['date'] = df['date'].apply(
lambda x: pd.Timestamp(year=int(x[:4]), month=int(x[4:6]), day=int(x[6:])).strftime('%Y-%m-%d'))
if groupby:
# 有分组
for group, df_group in df.groupby(groupby):
df_group.reset_index(drop=True, inplace=True)
q['groups'].append(group)
concat_data = []
for i in set(date_range) - set(df_group['date']):
if len(groupby) > 1:
concat_data.append((i, *group, 0))
else:
concat_data.append((i, group, 0))
df_group = pd.concat([df_group, pd.DataFrame(concat_data, columns=df_group.columns)])
df_group.sort_values('date', inplace=True)
q['values'].append(df_group['values'].to_list())
else:
# 无分组
concat_data = []
for i in set(date_range) - set(df['date']):
concat_data.append((i, 0))
df = pd.concat([df, pd.DataFrame(concat_data, columns=df.columns)])
q['values'].append(df['values'].to_list())
res.append(q)
return schemas.Msg(code=0, msg='ok', data=res)