104 lines
3.4 KiB
Python
104 lines
3.4 KiB
Python
import json
|
|
|
|
import pandas as pd
|
|
from fastapi import APIRouter, Depends, Request
|
|
import crud, schemas
|
|
|
|
from api import deps
|
|
from db.ckdb import get_ck_db, CKDrive
|
|
from db.redisdb import get_redis_pool, RedisDrive
|
|
from models import ToSql
|
|
|
|
router = APIRouter()
|
|
|
|
|
|
@router.post("/sql")
|
|
async def query_sql(
|
|
request: Request,
|
|
data_in: schemas.Sql,
|
|
ckdb: CKDrive = Depends(get_ck_db),
|
|
current_user: schemas.UserDB = Depends(deps.get_current_user)
|
|
) -> schemas.Msg:
|
|
"""原 sql 查询 """
|
|
data = await ckdb.execute(data_in.sql)
|
|
return schemas.Msg(code=0, msg='ok', data=data)
|
|
|
|
|
|
@router.post("/event_model_sql")
|
|
async def event_model_sql(
|
|
request: Request,
|
|
game: str,
|
|
data_in: schemas.CkQuery,
|
|
ckdb: CKDrive = Depends(get_ck_db),
|
|
rdb: RedisDrive = Depends(get_redis_pool),
|
|
current_user: schemas.UserDB = Depends(deps.get_current_user)
|
|
) -> schemas.Msg:
|
|
""" 事件分析模型 sql"""
|
|
|
|
columns_json = await rdb.get(f'{game}_event')
|
|
columns = json.loads(columns_json)
|
|
to_sql = ToSql(data_in.dict(), game, 'event', columns.keys())
|
|
res = to_sql.get_sql_query_event_model()
|
|
return schemas.Msg(code=0, msg='ok', data=res)
|
|
|
|
|
|
@router.post("/event_model")
|
|
async def event_model(
|
|
request: Request,
|
|
game: str,
|
|
data_in: schemas.CkQuery,
|
|
ckdb: CKDrive = Depends(get_ck_db),
|
|
rdb: RedisDrive = Depends(get_redis_pool),
|
|
current_user: schemas.UserDB = Depends(deps.get_current_user)
|
|
) -> schemas.Msg:
|
|
""" 事件分析"""
|
|
columns_json = await rdb.get(f'{game}_event')
|
|
columns = json.loads(columns_json)
|
|
to_sql = ToSql(data_in.dict(), game, 'event', columns.keys())
|
|
sqls = to_sql.get_sql_query_event_model()
|
|
res = []
|
|
for item in sqls:
|
|
q = {
|
|
'groups': [],
|
|
'values': [],
|
|
'event_name': item['event_name']
|
|
}
|
|
sql = item['sql']
|
|
groupby = item['groupby'][1:]
|
|
date_range = item['date_range']
|
|
q['date_range'] = date_range
|
|
df = await ckdb.query_dataframe(sql)
|
|
if df.shape[0]==0:
|
|
return schemas.Msg(code=0, msg='ok', data=q)
|
|
df['date'] = df['date'].apply(lambda x: str(x))
|
|
# todo 时间粒度 暂时按天
|
|
df['date'] = df['date'].apply(
|
|
lambda x: pd.Timestamp(year=int(x[:4]), month=int(x[4:6]), day=int(x[6:])).strftime('%Y-%m-%d'))
|
|
|
|
if groupby:
|
|
# 有分组
|
|
for group, df_group in df.groupby(groupby):
|
|
df_group.reset_index(drop=True, inplace=True)
|
|
q['groups'].append(group)
|
|
|
|
concat_data = []
|
|
for i in set(date_range) - set(df_group['date']):
|
|
if len(groupby) > 1:
|
|
concat_data.append((i, *group, 0))
|
|
else:
|
|
concat_data.append((i, group, 0))
|
|
df_group = pd.concat([df_group, pd.DataFrame(concat_data, columns=df_group.columns)])
|
|
df_group.sort_values('date', inplace=True)
|
|
q['values'].append(df_group['values'].to_list())
|
|
|
|
else:
|
|
# 无分组
|
|
concat_data = []
|
|
for i in set(date_range) - set(df['date']):
|
|
concat_data.append((i, 0))
|
|
df = pd.concat([df, pd.DataFrame(concat_data, columns=df.columns)])
|
|
q['values'].append(df['values'].to_list())
|
|
|
|
res.append(q)
|
|
return schemas.Msg(code=0, msg='ok', data=res)
|