152 lines
4.4 KiB
Python
152 lines
4.4 KiB
Python
import random
|
|
import time
|
|
import datetime
|
|
import pandas as pd
|
|
def get_uid():
|
|
return hex(int(time.time() * 10 ** 7) + random.randint(0, 10000))[2:]
|
|
|
|
|
|
# 获取筛选条件的包含关系
|
|
def get_bijiao(bijiao):
|
|
if bijiao == '==' or bijiao == 'in' or bijiao == 'like' or bijiao == 'is not null':
|
|
return "IN"
|
|
elif bijiao == '!=' or bijiao == 'not like' or bijiao == 'is null':
|
|
return 'NOT LIKE'
|
|
|
|
|
|
# 判断传入的数据类型
|
|
def estimate_data(data_type):
|
|
if data_type == 'int':
|
|
return "Nullable(Int64)"
|
|
elif data_type == 'ip':
|
|
return "Nullable(DateTime('UTC'))"
|
|
else:
|
|
return "Nullable(String)"
|
|
#将字典变成字符串
|
|
def dict_to_str(dic):
|
|
c = str()
|
|
b = 0
|
|
for k, v in dic.items():
|
|
b += 1
|
|
if b == 1:
|
|
c += "{\"%s\":\"%s\"," % (k, v)
|
|
elif b != len(dic):
|
|
c += "\"%s\":\"%s\"," % (k, v)
|
|
else:
|
|
c += "\"%s\":\"%s\"}" % (k, v)
|
|
return c
|
|
|
|
def getEveryDay(begin_date,end_date):
|
|
# 前闭后闭
|
|
date_list = []
|
|
begin_date = datetime.datetime.strptime(begin_date, "%Y-%m-%d")
|
|
end_date = datetime.datetime.strptime(end_date,"%Y-%m-%d")
|
|
while begin_date <= end_date:
|
|
date_str = begin_date.strftime("%Y-%m-%d")
|
|
date_list.append(date_str)
|
|
begin_date += datetime.timedelta(days=1)
|
|
return date_list
|
|
#print(getEveryDay('2016-01-01','2017-05-11'))
|
|
def Download_xlsx(df,name):
|
|
"""
|
|
下载功能
|
|
name为文件名
|
|
"""
|
|
from urllib.parse import quote
|
|
import mimetypes
|
|
from utils import DfToStream
|
|
from fastapi.responses import StreamingResponse
|
|
file_name=quote(f'{name}.xlsx')
|
|
mime = mimetypes.guess_type(file_name)[0]
|
|
df_to_stream = DfToStream((df, name))
|
|
with df_to_stream as d:
|
|
export = d.to_stream()
|
|
Download=StreamingResponse(export, media_type=mime, headers={'Content-Disposition': f'filename="{file_name}"'})
|
|
return Download
|
|
|
|
def jiange_insert(list_date):
|
|
"""
|
|
间隔1条插入一条数据插入数据
|
|
:param day: list数据
|
|
:return: list
|
|
"""
|
|
i = 1
|
|
while i <= len(list_date):
|
|
list_date.insert(i, '-')
|
|
i += 2
|
|
return list_date
|
|
|
|
def create_df(resp):
|
|
"""
|
|
分布分析外部下载功能的df数据
|
|
"""
|
|
columns = resp['label']
|
|
day = list(resp['list'].keys())
|
|
jiange_insert(day)
|
|
date = []
|
|
day_nu = 0
|
|
for i in day:
|
|
if i == '-':
|
|
av = day[day_nu - 1]
|
|
day_date = resp['list'][av]['总体']
|
|
else:
|
|
day_date = resp['list'][i]['总体']
|
|
date_dict = {}
|
|
n = 0
|
|
p = 0
|
|
if i == '-':
|
|
date_dict['事件发生时间'] = '-'
|
|
date_dict['总人数'] = '-'
|
|
for nu in range(len(columns)):
|
|
date_dict[columns[nu]] = day_date['p'][p]
|
|
p += 1
|
|
date.append(date_dict)
|
|
else:
|
|
date_dict['事件发生时间'] = i
|
|
date_dict['总人数'] = day_date['total']
|
|
for nu in range(len(columns)):
|
|
date_dict[columns[nu]] = day_date['n'][n]
|
|
n += 1
|
|
date.append(date_dict)
|
|
day_nu += 1
|
|
columns.insert(0, '总人数')
|
|
columns.insert(0, '事件发生时间')
|
|
df = pd.DataFrame(data=date, columns=columns)
|
|
return df
|
|
def create_neidf(resp,columnName):
|
|
"""
|
|
分布分析内部下载功能的df数据
|
|
"""
|
|
columns = resp['label']
|
|
day = list(resp['list'].keys())
|
|
jiange_insert(day)
|
|
date = []
|
|
day_nu = 0
|
|
for i in day:
|
|
if i == '-':
|
|
av = day[day_nu - 1]
|
|
day_date = resp['list'][av]
|
|
else:
|
|
day_date = resp['list'][i]
|
|
date_dict = {}
|
|
n = 0
|
|
p = 0
|
|
if i == '-':
|
|
date_dict[columnName] = '-'
|
|
date_dict['全部用户数'] = '-'
|
|
for nu in range(len(columns)):
|
|
date_dict[columns[nu]] = day_date['p'][p]
|
|
p += 1
|
|
date.append(date_dict)
|
|
else:
|
|
date_dict[columnName] = i
|
|
date_dict['全部用户数'] = day_date['total']
|
|
for nu in range(len(columns)):
|
|
date_dict[columns[nu]] = day_date['n'][n]
|
|
n += 1
|
|
date.append(date_dict)
|
|
day_nu += 1
|
|
columns.insert(0, '全部用户数')
|
|
columns.insert(0, columnName)
|
|
df = pd.DataFrame(data=date, columns=columns)
|
|
return df |