from typing import List, Tuple import sqlalchemy as sa from sqlalchemy.sql import func from sqlalchemy import create_engine, column, and_, desc, table, or_ import pandas as pd from core.config import settings class ToSql: def __init__(self, data: dict, db_name: str, event_columns: List[str], user_columns: List[str]): self.db_name = db_name self.engine = create_engine('clickhouse://') self.event_view = data.get('eventView') self.events = data.get('events') self.event_columns = self.gen_columns(event_columns) self.user_columns = self.gen_columns(user_columns) self.event_table = sa.table('event', *self.event_columns.values(), schema=self.db_name) self.user_table = sa.table('user_view', *self.user_columns.values(), schema=self.db_name) def gen_columns(self, columns): return {col: column(col) for col in columns} def get_zone_time(self): return int(self.event_view.get('zone_time')) def get_date_range(self) -> Tuple[str, str]: start_data: str = self.event_view.get('startTime') end_data: str = self.event_view.get('endTime') return start_data, end_data def get_global_filters(self): return self.event_view.get('filters') or [] def get_group_by(self): # return self.event_view.get('groupBy') or [] return [item['column_id'] for item in self.event_view.get('groupBy')] def get_time_particle_size(self): return self.event_view.get('timeParticleSize') or 'P1D' def get_sql_query_event_model(self): is_join_user = False sqls = [] select_exprs = self.get_group_by() select_exprs = [self.event_columns.get(item) for item in select_exprs] time_particle_size = self.get_time_particle_size() start_data, end_data = self.get_date_range() time_zone = self.get_zone_time() select_exprs.insert(0, settings.TIME_GRAIN_EXPRESSIONS[time_particle_size](self.event_columns['#event_time'], time_zone)) date_range = pd.date_range(start_data, end_data, freq=settings.PROPHET_TIME_GRAIN_MAP[time_particle_size], tz='UTC').tolist() groupby = [item.name for item in select_exprs] for event in self.events: event_name = event['event_name'] where = [ func.addHours(self.event_columns['#event_time'], time_zone) >= start_data, func.addHours(self.event_columns['#event_time'], time_zone) <= end_data, self.event_columns['#event_name'] == event_name ] analysis = event['analysis'] filters = event['filters'] + self.get_global_filters() for item in filters: if item['table_type'] == 'user': is_join_user = True col = getattr(self, f'{item["table_type"]}_columns').get(item['column_id']) comparator = item['comparator_id'] ftv = item['ftv'] if comparator == '==': if len(ftv) > 1: where.append(or_(*[col == v for v in ftv])) else: where.append(col == ftv[0]) elif comparator == '>=': where.append(col >= ftv[0]) elif comparator == '<=': where.append(col <= ftv[0]) elif comparator == '>': where.append(col > ftv[0]) elif comparator == '<': where.append(col < ftv[0]) elif comparator == 'is not null': where.append(col.isnot(None)) elif comparator == 'is null': where.append(col.is_(None)) elif comparator == '!=': where.append(col != ftv[0]) if analysis == 'total_count': qry = sa.select(select_exprs + [func.count().label('values')]) elif analysis == 'touch_user_count': qry = sa.select( select_exprs + [func.count(sa.distinct(self.event_columns['#account_id'])).label('values')]) elif analysis == 'touch_user_avg': qry = sa.select(select_exprs + [ func.round((func.count() / func.count(sa.distinct(self.event_columns['#account_id']))), 2).label( 'values')]) elif analysis == 'distinct_count': qry = sa.select( select_exprs + [ func.count(sa.distinct(self.event_columns[event['event_attr_id']])).label('values')]) else: qry = sa.select( select_exprs + [ func.round(getattr(func, analysis)(self.event_columns[event['event_attr_id']]), 2).label( 'values')]) qry = qry.where(and_(*where)) qry = qry.group_by(*select_exprs) qry = qry.order_by(column('date')) qry = qry.limit(1000) qry = qry.select_from(self.event_table) if is_join_user: qry = qry.join(self.user_table, and_(self.event_columns.get('#account_id') == self.user_columns.get('#account_id'))) sql = str(qry.compile(self.engine, compile_kwargs={"literal_binds": True})) print(sql) sqls.append({'sql': sql, 'groupby': groupby, 'date_range': date_range, 'event_name': event_name }) return sqls