This commit is contained in:
wuaho 2021-06-16 18:06:30 +08:00
parent a92489b96f
commit bee7045492

View File

@ -212,7 +212,23 @@ async def funnel_model(
df = await ckdb.query_dataframe(sql)
# df.set_index('date',inplace=True)
data = {'level': cond_level}
data_list = []
if df.shape == (0, 0):
return schemas.Msg(code=0, msg='ok', data={'list': data_list, 'level': cond_level})
tmp = {'title': '总体'}
tmp_df = df[['level', 'values']].groupby('level').sum()
tmp_df.sort_index(inplace=True)
for i in tmp_df.index:
tmp_df.loc[i, 'values'] = tmp_df.loc[i:]['values'].sum()
tmp['n'] = tmp_df['values'].to_list()
tmp['p1'] = [100]
# tmp['p2'] = []
for i, v in tmp_df.loc[2:, 'values'].items():
tmp['p1'].append(round(v * 100 / tmp_df.loc[1, 'values'], 2))
# tmp['p2'].append(round(v*100 / tmp_df.loc[i - 1, 'values'], 2))
data_list.append(tmp)
if groupby:
# 补齐数据
concat_data = []
@ -225,7 +241,7 @@ async def funnel_model(
# df.sort_values(list((*groupby, 'level')), inplace=True, ascending=False)
for key, tmp_df in df.groupby(groupby):
tmp = data.setdefault(key, {})
tmp = {'title': key}
tmp_df.set_index('level', inplace=True)
tmp_df.sort_index(inplace=True)
for i in tmp_df.index:
@ -233,23 +249,9 @@ async def funnel_model(
tmp['n'] = tmp_df['values'].to_list()
tmp['p1'] = [100]
tmp['p2'] = []
# tmp['p2'] = []
for i, v in tmp_df.loc[2:, 'values'].items():
tmp['p1'].append(round(v*100 / tmp_df.loc[1, 'values'], 2))
tmp['p1'].append(round(v * 100 / tmp_df.loc[1, 'values'], 2))
# tmp['p2'].append(round(v*100 / tmp_df.loc[i - 1, 'values'], 2))
else:
tmp = data.setdefault('全部', {})
df.set_index('level', inplace=True)
df.sort_index(inplace=True)
for i in df.index:
df.loc[i, 'values'] = df.loc[i:]['values'].sum()
tmp['n'] = df['values'].to_list()
tmp['p1'] = [100]
tmp['p2'] = []
for i, v in df.loc[2:, 'values'].items():
tmp['p1'].append(round(v*100 / df.loc[1, 'values'], 2))
# tmp['p2'].append(round(v*100 / df.loc[i - 1, 'values'], 2))
return schemas.Msg(code=0, msg='ok', data=data)
data_list.append(tmp)
return schemas.Msg(code=0, msg='ok', data={'list': data_list, 'level': cond_level})