diff --git a/api/api_v1/endpoints/query.py b/api/api_v1/endpoints/query.py index b5fb180..f748234 100644 --- a/api/api_v1/endpoints/query.py +++ b/api/api_v1/endpoints/query.py @@ -137,7 +137,7 @@ async def event_model( q['groups'].append(groupby) q['values'].append(df['values'].to_list()) q['sum'].append(float(df['values'].sum())) - q['avg'].append(float(df['values'].mean())) + q['avg'].append(round(float(df['values'].mean()),2)) for last_value in df['values'].values[::-1]: if last_value > 0: q['last_value'] = float(last_value) @@ -166,7 +166,7 @@ async def event_model( df_group.sort_values('date', inplace=True) q['values'].append(df_group['values'].to_list()) q['sum'].append(float(df_group['values'].sum())) - q['avg'].append(float(df_group['values'].mean())) + q['avg'].append(round(float(df_group['values'].mean()),2)) for last_value in df['values'].values[::-1]: if last_value > 0: q['last_value'] = float(last_value) @@ -189,7 +189,7 @@ async def event_model( q['last_value'] = float(last_value) break q['sum'].append(float(df['values'].sum())) - q['avg'].append(float(df['values'].mean())) + q['avg'].append(round(float(df['values'].mean()),2)) if item['time_particle'] in ('P1D', 'P1W'): q['date_range'] = [d.strftime('%Y-%m-%d') for d in q['date_range']] elif item['time_particle'] in ('P1M',):