1.识别简历信息

This commit is contained in:
李伟 2022-07-11 17:33:04 +08:00
parent 1d518a83c5
commit e934b45e77
5 changed files with 475 additions and 1 deletions

View File

@ -79,3 +79,16 @@ async def interview_insert(
return schemas.Msg(code=200, msg='ok', data=data)
@router.post("/interview_insert")
async def interview_insert(
request: Request,
data_in: schemas.Interview,
ckdb: CKDrive = Depends(get_ck_db),
) -> schemas.Msg:
""" 面试情况 """
await interview.init()
res = interview.insert_interview_sql()
sql = res['sql']
insert_data = res['insert_data']
data = await db.execute_dict(sql, insert_data)
return schemas.Msg(code=200, msg='ok', data=data)

View File

@ -26,3 +26,4 @@ from .user_url import *
from .api_module import *
from .event_list import *
from .interview import *
from .interview_plan import *

16
schemas/interview_plan.py Normal file
View File

@ -0,0 +1,16 @@
from typing import List, Union, Dict
from pydantic import BaseModel
from typing import Optional
class Interview(BaseModel):
job_name: str =None # 应聘职位
hr_name: str # 面试负责人
interview_name: str # 面试官
interview_type: str # 面试类型
interview_sign: int # 面试签到
feedback: int # 面试反馈
interview_round: int # 面试轮次
pages: int = 1 # 分页的当前页
time_type: str # 要查询的时间范围类型

View File

@ -150,3 +150,13 @@ def create_neidf(resp,columnName):
columns.insert(0, columnName)
df = pd.DataFrame(data=date, columns=columns)
return df
def random_hex():
"""
生成16位随机数
:return: 随机数
"""
result = hex(random.randint(0,16**16)).replace('0x','').upper()
if(len(result)<16):
result = '0'*(16-len(result))+result
return result

434
utils/jianli.py Normal file
View File

@ -0,0 +1,434 @@
import re
import docx
import os
import copy
from pprint import pprint
from paddlenlp import Taskflow
import pdfplumber
from win32com import client as wc
from pdf2docx import Converter
# 文件路径
PATH_DATA = os.path.abspath("C:/Users/Administrator/Desktop/面试简历")
schema = ['姓名', '所在地', '户口所在地', '籍贯', '婚姻状况', '民族', '身高', '电话', 'tel', '应聘职位', '到岗时间', '学历', '毕业学校', '专业',
'期望薪资', '在校时间', '电子邮箱', '工作经验', 'Email', '性别', '年龄'
]
schema_dict = {'姓名': 'name', '所在地': 'location', '户口所在地': 'account', '婚姻状况': 'gam', '民族': 'nation', '身高': 'height',
'电话': 'phone', '应聘职位': 'job', '到岗时间': 'come_time', '学历': 'education', '毕业学校': 'school', '专业': 'career',
'期望薪资': 'money', '在校时间': 'at_school', '电子邮箱': 'mail', '工作经验': 'work_exp', 'Email': 'mails',
'性别': 'gender', '年龄': 'age', '籍贯': 'accounts', 'tel': 'tels'}
def chkworlkandtime(listdata):
"""
获取工作经历中任职的公司名称和对应的在岗时间
:param dictdata:
:return:返回列表格式
"""
res = {}
for i in listdata:
for key, datalist in i.items():
trueDict = {}
for data in datalist:
if data['text'] in trueDict:
if data['probability'] <= trueDict[data['text']]['probability']:
continue
trueDict.update({
data['text']: {
'end': data['end'],
'probability': data['probability'],
'start': data['start'],
}
})
trueList = []
for key1, value1 in trueDict.items():
value1.update({
'text': key1
})
trueDict1 = copy.deepcopy(value1)
trueList.append(trueDict1)
trueList.sort(key=lambda item: item['start'])
res.update({key: trueList})
ress = []
if res != {}:
for i in range(len(res['公司名'])):
date = {
'name': res['公司名'][i]['text'],
'time': res['时间'][i]['text']
}
ress.append(date)
return ress
def getText_docx(filename): # docx 转text
"""将docx读成text"""
doc = docx.Document(filename)
fullText = []
for i in doc.paragraphs: # 迭代docx文档里面的每一个段落
fullText.append(i.text) # 保存每一个段落的文本
numTables = doc.tables # 如果有表格的内容存放在这
if len(numTables) > 0:
for table in numTables:
row_count = len(table.rows)
col_count = len(table.columns)
for i in range(row_count):
for j in range(col_count):
fullText.append(table.cell(i, j).text)
return '\n'.join(fullText)
def pdf_docx(url, filename):
"""
将pdf文件转为docx文件
:param url:
:param filename:
:return:
"""
# 获取文件名称
file_name = filename.split('.')[0]
# pdf文件名称
pdf_name = url + f"/{filename}"
# docx文件名称
docx_name = url + f"/{file_name}.docx"
# 加载pdf文档
cv = Converter(pdf_name)
cv.convert(docx_name, start=0, end=12)
cv.close()
def getText_pdf(filename):
"""将pdf读成text"""
with pdfplumber.open(filename) as pdf_file:
content = ''
for i in range(len(pdf_file.pages)):
page_text = pdf_file.pages[i]
page_content = page_text.extract_text()
if page_content:
content = content + page_content + "\n"
return content
def doc_docx(url, filename):
"""
将doc文件转为docx文件
:param filename:
:return:
"""
word = wc.Dispatch("Word.Application")
doc = word.Documents.Open(url + f"/{filename}")
name = filename.split('.')[0]
doc.SaveAs(url + f'/{name}.docx', 12) # 12为docx
doc.Close()
word.Quit()
def clash(date, retain, pop):
"""
解决词性搜索时最后的结果只取有值的一个
例如'户口所在地','籍贯'只取默认的籍贯返回户口所在地有值把值给籍贯
:param date: 原数据
:param retain: 要固定返回给前端的数据 户口所在地
:param pop: 要删除的那个字段 籍贯
:return:
"""
if date[retain] != '':
date.pop(pop)
else:
date[retain] = date[pop]
date.pop(pop)
def get_date(schema, dates, schema_dict):
"""
把第三方获取的数据筛选出想要的基本信息
:param schema:中文的词性标注
:param dates:原数据
:param schema_dict:对应中文的英文
:return: 返回取出概率最大的基本信息数据
"""
date = {}
for i in schema:
text = dates[0].get(i, '')
# 如果数据中没有搜到对应的键,返回空字符串
if text == '':
date[schema_dict[i]] = text
else:
if len(text) == 1:
date[schema_dict[i]] = text[0]['text']
else:
aa = {}
num = []
for dic in text:
aa[dic['probability']] = dic['text']
num.append(dic['probability'])
# 取出概率最大的值
date[schema_dict[i]] = aa[max(num)]
# 解决邮箱冲突的问题
clash(date, 'mail', 'mails')
# 解决户口所在地冲突的问题
clash(date, 'account', 'accounts')
# 解决电话冲突的问题
clash(date, 'phone', 'tels')
return date
def fmtTxt(txt, istable=0):
# 所有关键字
chkStr = ['自我评价', '自我描述', '个人优势', '项目经历', '项目经验', '项目描述', '教育经历', '学习经历', '工作经历', '工作经验', '实习经历',
'技能特长', '技能', '特长', '专长', '技能专长', '专业技能', '职业技能', '个人评价']
# 自我描述
chkList1 = ['自我评价', '自我描述', '个人优势', '个人评价']
# 项目经验
chkList2 = ['项目经历', '项目经验', '项目描述']
# 教育背景
chkList3 = ['教育经历', '学习经历']
# 工作经历
chkList4 = ['工作经历', '工作经验', '实习经历']
# 个人技能
chkList5 = ['技能特长', '技能', '特长', '专长', '技能专长', '专业技能', '职业技能']
fmtList = [] # 返回拼接好的字符串列表
trueIndex = 0
fmtStr = ''
nowChkList = []
# 判断while循环是否需要停止
stop_int = 0
for index, i in enumerate(txt):
if istable:
text = i
else:
text = i.text
# text = re.sub('\s+', '', text).lstrip() # 字符串去除空格和换行符
# 没有检测出关键字
if not fmtStr:
# 自我描述
for i in chkList1:
# 判断是不是以关键字开头
if not text.startswith(i, 0):
continue
else:
if i in text:
fmtStr = text
nowChkList = [chk for chk in chkStr if chk not in chkList1]
# 检测出关键字证明需要继续循环
stop_int = 1
break
if fmtStr:
continue
# 项目经验
for i in chkList2:
if i in text:
fmtStr = text
nowChkList = [chk for chk in chkStr if chk not in chkList2]
stop_int = 1
break
if fmtStr:
continue
# 教育背景
for i in chkList3:
if i in text:
fmtStr = text
nowChkList = [chk for chk in chkStr if chk not in chkList3]
stop_int = 1
break
if fmtStr:
continue
# 工作经历
for i in chkList4:
# 判断是不是以关键字开头
if not text.startswith(i, 0):
continue
else:
if i in text:
fmtStr = text
nowChkList = [chk for chk in chkStr if chk not in chkList4]
stop_int = 1
break
if fmtStr:
continue
# 个人技能
for i in chkList5:
if i in text:
fmtStr = text
nowChkList = [chk for chk in chkStr if chk not in chkList5]
stop_int = 1
break
continue
else:
isTure = 1
for i in nowChkList:
if i in text:
isTure = 0
break
if isTure:
fmtStr += text
continue
else:
fmtStrTrue = fmtStr
fmtList.append(fmtStrTrue)
trueIndex = index
# fmtStr = ''
# nowChkList = []
# 剩余没有检索的部分
txt1 = txt[trueIndex:]
return fmtList, txt1, stop_int
# 当列表全部检索完毕需要停止循环
if fmtStr:
fmtStrTrue = fmtStr
fmtList.append(fmtStrTrue)
stop_int = 0
txt1 = txt[trueIndex:]
return fmtList, txt1, stop_int
def fmtList(txtlist, dates):
chkList1 = ['自我评价', '自我描述', '个人优势']
chkList2 = ['项目经历', '项目经验', '项目描述']
chkList3 = ['教育经历', '学习经历']
chkList4 = ['工作经历', '工作经验', '实习经历']
chkList5 = ['技能特长', '技能', '特长', '专长', '技能专长', '专业技能', '职业技能']
# 自我评价
review = []
# 项目经验
project = []
# 工作经验
work = []
# 教育经验
upgrade = []
# 技能特长
specialty = []
for text in txtlist:
ischk = 0
# 自我评价
for i in chkList1:
if i in text:
review.append(text)
ischk = 1
break
if ischk:
continue
# 项目经验
for i in chkList2:
if i in text:
project.append(text)
ischk = 1
break
if ischk:
continue
# 工作经验
for i in chkList4:
if i in text:
work.append(text)
ischk = 1
break
if ischk:
continue
# 教育经历
for i in chkList3:
if i in text:
upgrade.append(text)
ischk = 1
break
if ischk:
continue
# 自我评价
for i in chkList5:
if i in text:
specialty.append(text)
ischk = 1
break
if ischk:
continue
# 取出工作经验里面的公司名和时间
work_list = []
if len(work) > 0:
works = ''
for i in work:
works += i
schema = ['公司名', '时间']
ie = Taskflow('information_extraction', schema=schema)
text_lists = ie(works)
work_list = chkworlkandtime(text_lists)
# review自我评价, project项目经验work工作经验work具体工作的公司和时间upgrade教育经历specialty技能特长
dates.update({
'review': review,
'project': project,
'work': work,
'work_list': work_list,
'upgrade': upgrade,
'specialty': specialty,
})
return dates
def get_resume():
for root, dirs, files in os.walk(PATH_DATA):
for file in files: # 一个file就是一份简历
url = PATH_DATA + f"/{file}"
if os.path.splitext(file)[1] == '.pdf':
pdf_docx(PATH_DATA, file) # 转为docx
name = file.split('.')[0]
open_txt = docx.Document(PATH_DATA + f"/{name}.docx") # 打开docx
os.remove(PATH_DATA + f"/{name}.docx") # 删除生成的文件
txt = getText_pdf(url) # 打开pdf格式文件转txt
# txt = getText_docx(PATH_DATA + f"\{name}.docx")
elif os.path.splitext(file)[1] == '.docx':
open_txt = docx.Document(url) # 打开docx将用来读取每一段的内容
txt = getText_docx(url) # 打开docx格式文件转txt
elif os.path.splitext(file)[1] == '.doc':
doc_docx(PATH_DATA, file) # 转为docx
name = file.split('.')[0]
open_txt = docx.Document(PATH_DATA + f"/{name}.docx") # 打开docx
txt = getText_docx(PATH_DATA + f"/{name}.docx") # 打开docx格式文件转txt
os.remove(PATH_DATA + f"/{name}.docx") # 删除生成的文件
ie = Taskflow('information_extraction', schema=schema) # 花费时间会安装文件
# pprint(ie(txt)) # 姓名,电话,电子邮箱,民族,毕业院校,专业,工作经验,婚姻状况
# 获取的基础数据
text_lists = ie(txt)
# 处理后的基本数据
dates = get_date(schema, text_lists, schema_dict)
# 打开docx获取的每一段数据
txt_list = open_txt.paragraphs
# 获取的文档内容
txt_list1 = []
stop_int = 1
txt1 = txt_list
while stop_int:
txt_list2, txt1, stop_int = fmtTxt(txt1)
txt_list1 += txt_list2
# print(txt_list1)
numTables = open_txt.tables # 获取表格里面的内容
table_list = []
if len(numTables) > 0:
for table in numTables:
row_count = len(table.rows)
col_count = len(table.columns)
for i in range(row_count):
for j in range(col_count):
texts = table.cell(i, j).text
# texts = re.sub('\s+', '', texts).lstrip() # 字符串去除空格和换行符
if not texts:
continue
if texts in table_list:
continue
table_list.append(texts)
if table_list:
stop_table = 1
table1 = table_list
while stop_table:
table_list2, table1, stop_table = fmtTxt(table1, istable=1)
txt_list1 += table_list2
# print(txt_list1)
# review自我评价,project项目经验work工作经验upgrade教育经历specialty技能特长
# 把两部分的数据合起来返回前端,数据都在dates中
fmtList(txt_list1, dates)
# pprint(dates)
a = 1
return dates
if __name__ == '__main__':
get_resume()